Universality in Random Matrix Theory for orthogonal and symplectic ensembles
نویسندگان
چکیده
منابع مشابه
Universality in Random Matrix Theory for Orthogonal and Symplectic Ensembles
Abstract. We give a proof of universality in the bulk for orthogonal (β = 1) and symplectic (β = 4) ensembles of random matrices in the scaling limit for a class of weights w(x) = e (x) where V is a polynomial, V (x) = κ2mx+· · · , κ2m > 0. For such weights the associated equilibrium measure is supported on a single interval. The precise statement of our results is given in Theorem 1.1 below. F...
متن کاملOn the Proof of Universality for Orthogonal and Symplectic Ensembles in Random Matrix Theory
We give a streamlined proof of a quantitative version of a result from [DG1] which is crucial for the proof of universality in the bulk [DG1] and also at the edge [DG2] for orthogonal and symplectic ensembles of random matrices. As a byproduct, this result gives asymptotic information on a certain ratio of the β = 1, 2, 4 partition functions for log gases.
متن کاملUniversality for Orthogonal and Symplectic Laguerre-type Ensembles
We give a proof of the Universality Conjecture for orthogonal (β = 1) and symplectic (β = 4) random matrix ensembles of Laguerre-type in the bulk of the spectrum as well as at the hard and soft spectral edges. They concern the appropriately rescaled kernels K n,β , correlation and cluster functions, gap probabilities and the distributions of the largest and smallest eigenvalues. Corresponding r...
متن کاملOn Orthogonal and Symplectic Matrix Ensembles
The focus of this paper is on the probability, Eβ(Q; J), that a set J consisting of a finite union of intervals contains no eigenvalues for the finite N Gaussian Orthogonal (β = 1) and Gaussian Symplectic (β = 4) Ensembles and their respective scaling limits both in the bulk and at the edge of the spectrum. We show how these probabilities can be expressed in terms of quantities arising in the c...
متن کاملUniversality at the Edge of the Spectrum for Unitary, Orthogonal and Symplectic Ensembles of Random Matrices
Abstract. We prove universality at the edge of the spectrum for unitary (β = 2), orthogonal (β = 1) and symplectic (β = 4) ensembles of random matrices in the scaling limit for a class of weights w(x) = e (x) where V is a polynomial, V (x) = κ2mx + · · · , κ2m > 0. The precise statement of our results is given in Theorem 1.1 and Corollaries 1.2, 1.3 below. For a proof of universality in the bul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Mathematics Research Papers
سال: 2010
ISSN: 1687-3017,1687-3009
DOI: 10.1093/imrp/rpm004